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Carbon monoxide dehydrogenase from Clostridium ther-
moaceticum (CODHc,) catalyzes the synthesis of acetyl-CoA
and the reversible oxidation of CO to CO,.! The enzyme has an
(af); subunit structure containing two Niand 11-13 Fe per af.2
The metal ions are organized into approximately four autonomous
complexes/clusters including: (i) the NiFe complex, thought to
contain one Ni ion chemically linked to an iron-sulfur cluster;**
(ii) an [FeS4]2*/1* cluster; (iii) a single iron known as ferrous
component II;* and (iv) a cluster, comprised of at least two irons,
that yields a rhombic EPR signal (g; =2.01, g; = 1.81, g; =1.65,
gav = 1.82) in its one-electron reduced form (E°’ = -220 % 35
mV vs NHE).4 Circumstantial evidence suggests that Ni is part
of this cluster, but this is not known with certainty. We shall
refer to this cluster as the C-cluster.> The NiFe complex almost
certainly functions as the active site for acetyl-CoA synthesis,
while another, unidentified species appears to serve as the active
site for CO oxidation.1»

Cyanide inhibits the CO oxidation activities of all CODHs
investigated so far.2™® Because the substrate CO reverses
inhibition by CN-, Grahame and Stadtman inferred that CN-
and CO compete for the same binding site.! A similar conclusion
was reached from a thorough investigation of the effects of CN-
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Figure 1. EPR of partially oxidized CODH before (A) and after (B)
addition of KCN, The g,y = 1.82 signal in A quantified to 0.3 spin/af.
The gqv = 1.72signalin B quantified to 0.1 spin/a8. Both spectra contain
minor signals from uncharacterized species. Arrow in B indicates the
g-valueat which ENDOR data were collected. Conditions: temperature,
10 K; microwave frequency, 9.428 GHz; microwave power, 20 mW;
modulation amplitude, 11 G. Thesignal was simulated using the program
XPOW? and g, = 1.87, g2 = 1.78, g3 = 1.55.

on the CODH from Rhodospirillum rubrum (CODHg,).* CN-
was found to be a slow-binding inhibitor of CO oxidation that
binds at the active site. We have sought to identify the CO
oxidation active site of CODHg, by identifying its CN- binding
site.0 We report here that CN- alters the g,, = 1.82 signal and
unambiguously show by 35-GHz 13C ENDOR!! spectroscopy
that CN- binds directly to the C-cluster.

The g,, = 1.82 signal (Figure 1A) was generated from a
sample!? of dithionite-free, partially oxidized CODHg;. After
addition of KCN, the g,, = 1.82 signal transformed into a new
signal (Figure 1B) with g, = 1.72 (g1 = 1.87, g2 = 1.78,and g3
=1.55).15 Signals of similar appearance were obtained in spectra
of all 50 CN--inhibited samples examined. In contrast to the
response of the C-cluster to CN-, the g-values and line shapes of
EPR signals from the NiFe complex and the [Fe,S4]'* cluster
were unaffected by the cyanide treatment.!¢

To determine whether CN- binds directly to the C-cluster, a
sample!” prepared similarly but with *CN- was examined for
BC (I =1/,) ENDOR signals. The ENDOR spectrum (Figure
2A), taken at a field where the EPR consisted only of the g,y =
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Figure2. Q-band ENDOR of'the g,, = 1.82signalfrom CODHc, prepared
with 13CN- (A) and 12CN- (B). Data were taken at g = 1.81. The 13C
ENDOR pattern shows two doublets centered at the Larmor frequency
for 13C (»(13C), filled circle) and split by hyperfine interactions A4;
(connecting lines). The spectrum of the 12CN—~inhibited sample shows
only a single peak at 8.5 MHz, possibly due to ¥N.18 Conditions:
temperature, 2 K; scan rate, | MHz/s; radio frequency power, 30 W;
time constant, 32 ms; microwave frequency, 35.35 (A) and 35.18 GHz
(B); microwave power, 0.8 mW; 100-KHz field modulation; modulation
amplitude, 1.2 G.

1.72 signal, exhibited two hyperfine-split doublets centered at
the 13C Larmor frequency, with 4; = 12.7 MHz and 4, = 6.5
MHz. In contrast, the ENDOR spectrum of a 12CN- control
(Figure 2B) consisted of only a weak feature assignable to 4N.18
The magnitudes of the 13C hyperfine values are too large to arise
from dipolar (through-space) coupling to *CN-bound to a nearby
cluster. For example, the maximum theoretical dipolar coupling
to a 3CN- 3-4 A from the C-cluster would be less than ca. 1-2
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MHz.!®* Thus, the observed !3C signals must reflect direct
coordination to the C-cluster. The presence of two doublets might
arise from the binding of two cyanides to the C-cluster, each with
isotropic A-tensor components, or, more likely, from the binding
of one cyanide where hyperfine anisotropy leads to a splitting of
the ENDOR resonances at fields away from the edges of the
EPR signal.20 These results demonstrate that CN-binds directly
to the C-cluster and, given the body of evidence that CN-inhibits
CODHs competitively, indicate that the C-cluster is the active
site for CO oxidation in CODHg;.

The cluster in CODHg, that functions as the CO oxidation
active site® (called the signal A cluster) has EPR, CN--binding,
and redox properties quite similar to those of the C-cluster. There
is also some homology between the two polypeptides that most
likely house these clusters.2! The signal A cluster is a novel Ni-
Fe-S structure in which Ni is coordinated to S and N/O in a
distorted 4- or 5-coordinate complex, chemically bridged to (rather
than incorporated into) an Fe-S cluster.22 Given the similar
properties of the two clusters, the C-cluster may have a similar
Ni-Fe-S structure. In addition, the CODHs from Methanosa-
rcina barkeri and Methanothrix soehngenii also contain clusters
with EPR, CN--binding, and redox properties similar to those of
the C-cluster.2? This suggests that all CODHs have CO oxidation
sites with Ni-Fe-S structures that bind CN-, engageinn =1
redox chemistry with E°’ of ca. -150 % 110 mV, and, when
reduced, exhibit EPR signals with g,, < 2.
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